\(\emptyset = \{\}\) is the empty set.
A multiset, also called a bag, tracks repeats, but not order.
\(\{a,a,a,b,b,b,b,c,c,d,d,d,d,d\}\) is a multiset.
It can also be written as \(\{a:3, b:4, c:2, d:5\}\).
Let \(A\) and \(B\) be sets. We say that \(A\) is a subset of \(B\) if and only if every element of \(A\) is an element of \(B\).
We write \(A \subseteq B\) to denote the fact that \(A\) is a subset of \(B\).
The complement of a set \(A\), denoted \(\bar{A}\) is the set of all elements in the universe \(U\) that are not in \(A\).
\(\bar{A} = \{x ~ | ~ x \notin A\}\)
\(\forall a, ~ a \in \bar{A} \leftrightarrow a \notin A\)
or, equivalently, \(\forall a \in U, ~ a \notin \bar{A} \leftrightarrow a \in A\)
\(A \cap B\) are the elements that are both in \(A\) and \(B\).
\(A \cap B = \{ x ~ | ~ x \in A \land x \in B \}\)
\(\forall A, B, x, ~ x \in A \cap B \leftrightarrow (x \in A \land x \in B)\)
\(A \cup B\) are the elements that are either in \(A\) or \(B\).
\(A \cup B = \{ x ~ | ~ x \in A \lor x \in B \}\)
\(\forall A, B, x, ~ x \in A \cup B \leftrightarrow (x \in A \lor x \in B)\)
The difference of sets \(A\) and \(B\) is the set that contains all elements in \(A\) that are not in \(B\).
\(A - B = A\backslash B =\{\, x ~ | ~ x \in A \land x \notin B \}\)
\(\forall A, B, x, ~ x \in A \backslash B \leftrightarrow x \in A \land x \notin B\)
Let \(A=\{1,3,5,7\}\) and \(B=\{4,5,6,7,8\}\).
\(A-B = \{1,3\}\).
Let \(C=\{\bigcirc,\diamondsuit,\Box,\heartsuit\}\) and \(e = \heartsuit\).
\(C-\{e\} = \{\bigcirc, \diamondsuit, \Box\}\).
\(A \oplus B = \{x ~ | ~ x \in A \oplus x \in B\}\)
\(\forall A,B,x, ~ x \in A \oplus B \leftrightarrow x \in A \oplus x \in B\)
Two sets are disjoint if they share no elements.
\(\forall A,B,\) \(A\) and \(B\) are disjoint \(\leftrightarrow A \cap B = \emptyset\)
\(\forall A,B,\) \(A\) and \(B\) are disjoint \(\leftrightarrow \forall x,~ (x \in B \rightarrow x \notin A) \land (x \in A \rightarrow x \notin B)\)
\(A \uplus B\) is the union of two disjoint sets.
If \(A\) and \(B\) are disjoint (share no elements), then \(A \uplus B = A \cup B\)
If \(A\) and \(B\) share elements, then \(A \uplus B = ERROR\)
\(\forall A,B,~ A \uplus B = A \cup B \leftrightarrow A \cap B = \emptyset\)
The cartesian product of \(A\) and \(B\),
\(A \times B = \{(a,b)| \forall a \in A\), \(\forall b \in B\}\)
\(\forall A,B, a,b, ~ ((a,b) \in A \times B) \leftrightarrow (a \in A \land b \in B)\)
The powerset of a set \(A\), denoted \(\mathscr{P}(A)\) is the set of all subsets of \(A\)
\(\mathscr{P}(A) = \{ S ~ | ~ S \subseteq A\}\)
The \(k\)-subsets of a set \(A\), denoted \({A \choose k}\) are all subsets of \(A\) that are size \(k\).